rerunModels.py 10.8 KB
Newer Older
sjromuel's avatar
d  
sjromuel committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import tkinter as tk
import os
import matplotlib
from tkinter import filedialog
from skimage import transform
import SimpleITK as sitk
import argparse
#import os
#import pydot
#from graphviz import Digraph
#import shutil
#from tensorflow.keras import layers, models
#from utils.dataLoader import *
from utils.other_functions import *
from nets.Unet import *

def main():
    models = ["12", "34", "56", "78", "910", "1112", "1314", "1516"]
    folder_path = "finalResults/complete_seg/ae_class_cv_seg/"
    #modeltype = "Cluster_"
Robin's avatar
d    
Robin committed
24
25
    #modeltype = "Class_"
    modeltype = "Cluster_class_"
sjromuel's avatar
d  
sjromuel committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    #modeltype = "Unet_"

    ##################### U-Net #####################
    for fold in models:

        file_path = folder_path+"TPs"+fold+modeltype

        ### read out files ###
        weights = np.load(file_path+"model.npy", allow_pickle=True)
        [test_patients,
         val_patients,
         number_patients,
         img_path,
         shrink_data,
         newSize,
         lr,
         batch_size,
         num_epochs,
         e,
         augment,
         save_path,
         gt_type,
         filter_multiplier] = np.load(file_path+"params.npy", allow_pickle=True)
        #  autoencoder_model__e100_switchclass1024_nohiddenclusternet needs to comment out gt_type and val_patients
        print('Training Parameters:')
        print('-----------------')
        print('Number of Patients: ', number_patients)
        print('Number of epochs: ', num_epochs)
        print('Test Patient number: ', test_patients)
        print('Image Size: ', newSize)
        print('Filter Multiplier: ', filter_multiplier)
        print('Data Augmentation: ', augment)
        print('Learning rate: ', lr)
        print('Image Path: ', img_path)
        print('Save Path: ', save_path)
        print('GT Type:', gt_type)

        ### Load test patient
        if gt_type == "thresh" or gt_type == "ctthresh_gt":
            img_path = "data/npy_thresh/"
        else:
            img_path = "data/npy/"
        full_list = os.listdir(img_path)
        seg_list = os.listdir("data/npy/")

        X_img_list = []
        GT_img_list = []
        ytrue_img_list = []
        # thresh_img_list = []
        if "mr" in save_path:
            for elem in full_list:
                if elem.endswith("T1.gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    X_img_list.append(elem)
                    if gt_type == "ctthresh_gt":
                        X_img_list.append(elem)
                        X_img_list.append(elem)

                elif elem.endswith(gt_type + ".gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    GT_img_list.append(elem)
            for elem in seg_list:
                if elem.endswith("segmr.gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    ytrue_img_list.append(elem)
                    if gt_type == "ctthresh_gt":
                        ytrue_img_list.append(elem)
                        ytrue_img_list.append(elem)

        else:
            for elem in full_list:
                if elem.endswith("ct.gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    X_img_list.append(elem)
                    if gt_type == "thresh":
                        X_img_list.append(elem)
                        X_img_list.append(elem)

                elif elem.endswith(gt_type+".gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    GT_img_list.append(elem)
            for elem in seg_list:
                if elem.endswith("seg.gipl.npy") and (elem.startswith('P' + str(test_patients[0]).zfill(2)) or elem.startswith('P' + str(test_patients[1]).zfill(2))):
                    ytrue_img_list.append(elem)
                    if gt_type == "thresh":
                        ytrue_img_list.append(elem)
                        ytrue_img_list.append(elem)
        list.sort(X_img_list)
        list.sort(GT_img_list)
        list.sort(ytrue_img_list)
        print("Input Image List", X_img_list)
        print("GT Image List", GT_img_list)
        print("True Segmentation Image List", ytrue_img_list)


        for j in range(2):
            if gt_type == "thresh" or gt_type == "ctthresh_gt":
                X_img_npys = np.load(img_path + X_img_list[j*3])
                GT_img_npys = np.load(img_path + GT_img_list[j*3])
                ytrue_img_npys = np.load(img_path + ytrue_img_list[j*3])
                print(GT_img_list[j*3])
                print(GT_img_list[j * 3+1])
                print(GT_img_list[j * 3+2])

                X_img_npys = np.append(X_img_npys, np.load(img_path + X_img_list[j * 3+1]), axis=0)
                GT_img_npys = np.append(GT_img_npys, np.load(img_path + GT_img_list[j * 3+1]), axis=0)
                ytrue_img_npys = np.append(ytrue_img_npys, np.load(img_path + ytrue_img_list[j * 3+1]), axis=0)

                X_img_npys = np.append(X_img_npys, np.load(img_path + X_img_list[j * 3+2]), axis=0)
                GT_img_npys = np.append(GT_img_npys, np.load(img_path + GT_img_list[j * 3+2]), axis=0)
                ytrue_img_npys = np.append(ytrue_img_npys, np.load(img_path + ytrue_img_list[j * 3+2]), axis=0)

                print("Input shape: ", np.shape(X_img_npys))
                print("GT shape: ", np.shape(GT_img_npys))
                print("True Segm shape: ", np.shape(ytrue_img_npys))

            else:
                X_img_npys = np.load(img_path + X_img_list[j])
                GT_img_npys = np.load(img_path + GT_img_list[j])
                ytrue_img_npys = np.load(img_path + ytrue_img_list[j])

                print("Input shape: ", np.shape(X_img_npys))
                print("GT shape: ", np.shape(GT_img_npys))
                print("True Segm shape: ", np.shape(ytrue_img_npys))



            X_img_npys = transform.resize(X_img_npys, (X_img_npys.shape[0], newSize[0], newSize[1]), order=0,
                                          preserve_range=True, mode='constant', anti_aliasing=False,
                                          anti_aliasing_sigma=None)
            GT_img_npys = transform.resize(GT_img_npys, (GT_img_npys.shape[0], newSize[0], newSize[1]), order=0,
                                           preserve_range=True, mode='constant', anti_aliasing=False,
                                           anti_aliasing_sigma=None)
            ytrue_img_npys = transform.resize(ytrue_img_npys, (ytrue_img_npys.shape[0], newSize[0], newSize[1]),
                                              order=0,
                                              preserve_range=True, mode='constant', anti_aliasing=False,
                                              anti_aliasing_sigma=None)
            X_test = np.reshape(X_img_npys, (X_img_npys.shape[0], X_img_npys.shape[1], X_img_npys.shape[2], 1))
            GT_test = np.reshape(GT_img_npys, (GT_img_npys.shape[0], GT_img_npys.shape[1], GT_img_npys.shape[2], 1))
            ytrue = np.reshape(ytrue_img_npys,
                               (ytrue_img_npys.shape[0], ytrue_img_npys.shape[1], ytrue_img_npys.shape[2], 1))


            test_dataset = tf.data.Dataset.from_tensor_slices((X_test, ytrue))
            test_dataset = test_dataset.batch(batch_size=1)
            print(test_patients)
            TP_num = test_patients[j]

            ###################################################################################

            detailed_images = False
            npys3d          = True

            ###################################################################################



            test_loss = []
            test_loss_hdd = []
            test_loss_hdd2 = []
            y_pred3d = []
            for features in test_dataset:
                image, y_true = features
                y_true = onehotencode(y_true)
                y_pred = Unet(image, weights, filter_multiplier, training=False)
Robin's avatar
d    
Robin committed
186
187
188
189
190
                
                if y_pred3d == []:
                        y_pred3d = y_pred[:,:,:,0].numpy()
                else:
                    y_pred3d =  np.append(y_pred[:,:,:,0].numpy(), y_pred3d, axis=0)
sjromuel's avatar
d  
sjromuel committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

                loss = dice_loss(y_pred, y_true)
                loss = tf.make_ndarray(tf.make_tensor_proto(loss))
                test_loss.append(loss)
                #print(test_loss)
                try:
                    y_true_np = np.squeeze(y_true[0, :, :, 0].numpy() > 0.5)
                    y_true_np = y_true_np.astype(np.float_)
                    pred_np = np.squeeze(y_pred[0, :, :, 0].numpy() > 0.5)
                    pred_np = pred_np.astype(np.float_)
                    hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter()
                    hausdorff_distance_filter.Execute(sitk.GetImageFromArray(y_true_np), sitk.GetImageFromArray(pred_np))
                    test_loss_hdd.append(hausdorff_distance_filter.GetHausdorffDistance())

                    hausdorff_distance_filter2 = sitk.HausdorffDistanceImageFilter()
                    hausdorff_distance_filter2.Execute(sitk.GetImageFromArray(pred_np), sitk.GetImageFromArray(y_true_np))
                    test_loss_hdd2.append(hausdorff_distance_filter2.GetHausdorffDistance())
                except:
                    pass

            #plt.show()
            #print(test_loss)
            print("TestLoss Mean for P", test_patients[j], ": ", np.mean(test_loss))

            #print(test_loss_hdd)
            print("Hausdorff-Distance for P", test_patients[j],":", np.mean(test_loss_hdd))
            print("Hausdorff-Distance2 for P", test_patients[j], ":", np.mean(test_loss_hdd2))
Robin's avatar
d    
Robin committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
            
            #### Hausdorff 3D: 
            
            '''ytrue = tf.convert_to_tensor(ytrue)
            y_pred3d = tf.convert_to_tensor(y_pred3d)

            print(tf.shape(ytrue))
            y_true3d = np.squeeze(ytrue[:,:,:,0].numpy() > 0.5)
            y_true3d = y_true.astype(np.float_)
            print(np.shape(y_true3d))
            print(type(y_true3d))
            print(type(y_pred3d))
            pred3d = np.squeeze(y_pred3d[:,:,:].numpy() > 0.5)
            pred3d = pred3d.astype(np.float_)
            print(np.shape(pred3d))
            print(type(pred3d))
            hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter()
            hausdorff_distance_filter.Execute(sitk.GetImageFromArray(y_true3d), sitk.GetImageFromArray(pred3d))
            hdd3d = hausdorff_distance_filter.GetHausdorffDistance()
            print("3D HDD for patient", test_patients[j], ":", hdd3d)'''
sjromuel's avatar
d  
sjromuel committed
238
239
240
      #####

if __name__ == "__main__":
Robin's avatar
d    
Robin committed
241
    main()