Commit b4fcb83d authored by sjromuel's avatar sjromuel
Browse files

d

parent 866b63a1
......@@ -194,15 +194,15 @@ def main():
#number_patients = number_patients * 5
img_path = "data/npy_thresh/"
#specificmodels = [6]
specificmodels = [0, 1]
if cross_val:
log = open("logs" + modelname + ".txt", "w+")
log.write(modelname + "\r")
log.write("Start Cross Validation Training \r")
log.close()
print("Start Cross Validation Training")
#for validation_round in specificmodels:
for validation_round in range(number_patients//2):
for validation_round in specificmodels:
#for validation_round in range(number_patients//2):
log = open("logs" + modelname + ".txt", "a+")
test_patients = (2*validation_round+1, 2*validation_round+2)
vallist= list(range(1, number_patients+1)) + list(range(1, number_patients+1))
......
......@@ -125,7 +125,7 @@ def train_unet(model, inputs, gt, weights, optimizer, filter_multiplier):
def init_weights(manual_seed=26):
### initializing weights ###
#initializer = tf.initializers.glorot_uniform(seed=manual_seed)
initializer = tf.keras.initializers.TruncatedNormal(seed=26)
initializer = tf.keras.initializers.TruncatedNormal(seed=manual_seed)
shapes = [ # filter_height, filter_width, in_channels, out_channels
# for conv2d_transpose: filter_height, filter_width, out_channels, in_channels
[3, 3, 1, 16],
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment